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Abstract

This project investigates the performance of U-Net-
based models on the DeepGlobe Land Cover Classification
dataset, evaluating the impact of three key modifications:
focal loss, class-aware data augmentation, and transfer
learning with a ResNet-34 encoder. Despite the widespread
belief that class imbalance is the primary limitation in land
cover segmentation, results suggest otherwise. Confusion
matrices reveal that dominant classes like Agriculture are
frequently misclassified as rare classes, leading to false
positives rather than false negatives. This behavior is at-
tributed to a combination of inter-class visual similarity,
intra-class diversity, and a lack of global semantic con-
text. Among the approaches tested, transfer learning with
a pretrained encoder yielded the most consistent improve-
ments, while focal loss worsened performance by ampli-
fying false positives of rare classes. These findings high-
light the need for models that better capture spatial con-
text and global scene structure, suggesting future directions
such as transformer-based architectures or satellite-specific
pretraining.

1. Introduction

Land cover classification from satellite imagery is a cru-
cial task in remote sensing with applications in urban plan-
ning, climate change analysis, and agricultural monitor-
ing. This project tackles the Land Cover Classification task
from the DeepGlobe 2018 Challenge [3], which presents a
rich dataset of high-resolution satellite images labeled with
seven semantic classes: urban, agriculture, rangeland, for-
est, water, barren land, and unknown (e.g., clouds or noise).

The input is a 1024× 1024 RGB satellite image, and the
objective is to produce an output of a segmentation mask
where each pixel is assigned to one of six interpretable land
cover classes (excluding unknown). Compared to other re-
mote sensing datasets, the DeepGlobe dataset stands out for
its diversity of land cover types and dense, high-quality an-
notations. The main challenges include inter-class similar-
ity (e.g., rangeland vs. forest vs. agriculture), high intra-
class variability (e.g., different types of crops in Agricul-

tural land), and class imbalance.
To establish a baseline, I implemented a U-Net archi-

tecture trained from scratch using a class-weighted cross-
entropy loss. I then explore how various techniques, such
as focal loss, class-aware data augmentation, and transfer
learning with ResNet-34.

This goal of this project is to investigate how these en-
hancements address the unique challenges of the Deep-
Globe dataset, especially in terms of improving perfor-
mance on rare or ambiguous land cover classes.

Despite common assumptions that class imbalance is the
main limiting factor, my results suggest that inter-class sim-
ilarity and intra-class variation—especially in ambiguous
or visually similar regions—play a more significant role in
limiting segmentation performance. The best-performing
model (U-Net with ResNet-34 encoder) achieved a mean
IoU of 0.34, improving over the baseline by 6.5 percent-
age points. These findings highlight the importance of
global context and semantic reasoning in resolving ambigu-
ous boundaries in satellite imagery.

2. Related Work
Land cover classification from satellite imagery is an im-

portant task in remote sensing. Traditional methods typi-
cally relied on classical machine learning algorithms such
as Support Vector Machines (SVMs) [11] and Random
Forests (RFs) [2]. While interpretable, these models of-
ten underperformed on complex scenes due to their limited
ability to capture spatial and contextual information.

The emergence of deep learning, particularly convolu-
tional neural networks (CNNs), has led to significant ad-
vances in semantic segmentation for remote sensing appli-
cations. Long et al. [9] first introduced the idea of that Fully
Convolutional Networks (FCNs) [9] could be applied for
dense, pixel-wise segmentation tasks, and not just image
classification. This was further extended by architectures
like U-Net [13], which introduced skip connections to better
recover spatial detail during upsampling. Variants of U-Net
have since become a staple in remote sensing applications,
as demonstrated by Sherrah [14] and Audebert et al. [1].

A major challenge in remote sensing classification prob-
lems is that of class imbalance due to the inherent un-
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equal distribution of real-world land types. Focal loss,
first introduced by Lin et al.[8] for dense object detection,
addresses imbalanced datasets by down-weighting well-
classified examples and focusing training on hard, misclas-
sified instances. Doi and Iwasaki[4] later adapted focal loss
for high-resolution aerial image segmentation, demonstrat-
ing measurable gains—particularly for underrepresented
classes.

While this project focuses on CNN-based methods,
Transformer-based models have also recently gained trac-
tion and are now state-of-art in remote sensing segmentation
tasks due to their ability to model long-range dependencies.
SegFormer [17] introduced an efficient design that avoids
heavy upsampling and has been adapted for overhead im-
agery. For example, recently, VistaFormer [10] proposed
a scalable, lightweight transformer architecture specifically
for satellite image time series segmentation. By replacing
traditional Multi-Head Self-Attention with Neighbourhood
Attention and using position-free encoding, VistaFormer
achieves state-of-the-art accuracy on semantic segmentation
of remote-sensing images, while using significantly fewer
parameters and computational resources.

Overall, the field has progressed from classical models
to CNN-based methods and now toward Transformers. My
project will build on the CNN foundation, evaluating how
enhancements like loss functions, data augmentation, and
pretrained encoders affect segmentation performance.

3. Methods
I examine the impact of several modeling and training

choices on land cover segmentation performance. My base-
line is a U-Net architecture trained from scratch using a
weighted cross-entropy loss. I then conduct an ablation
study to investigate the effectiveness of three design deci-
sions:

• Using focal loss instead of weighted cross-entropy to
mitigate class imbalance.

• Applying class-aware data augmentation to increase
model robustness and class diversity.

• Incorporating a ResNet-34 encoder pretrained on Ima-
geNet to leverage transfer learning.

Each of these components is evaluated in isolation rel-
ative to the baseline(for the sake of time and scope of the
project, I do not explore interactions between factors).

3.1. Baseline: U-Net Architecture

My baseline model is a U-Net architecture that I im-
plemented from scratch. It follows a symmetric encoder-
decoder structure with skip connections between corre-
sponding layers. The encoder consists of four blocks, each

containing two convolutional layers followed by ReLU acti-
vations and a 2×2 max-pooling operation for spatial down-
sampling. The decoder mirrors this structure, using trans-
posed convolutions for upsampling, followed by two con-
volutional layers and skip connections that concatenate en-
coder features to preserve spatial detail. The bottleneck
block connects the encoder and decoder at the lowest res-
olution, and a final 1 × 1 convolution projects the decoder
output to class logits.

Given an input image X ∈ R3×H×W , the model outputs
pixel-wise class scores Ŷ ∈ RC×H×W for C = 7 land
cover classes:

Ŷ = fU-Net(X)

Following the practice suggested by the original Deep-
Globe authors [3], I excluded the Unknown class from train-
ing and evaluation. This class typically represents cloud
cover or other obscured regions, which are infeasible to
classify and can introduce noise into the learning signal. In
my implementation, I ignore this class by setting its weight
to zero and ignoring it in the loss function.

3.2. Loss Function: Weighted Cross-Entropy vs Fo-
cal Loss

A key challenge in land cover segmentation is class im-
balance, where certain classes (e.g., agricultural land) dom-
inate the pixel distribution while others (e.g., water bodies)
are rare. The exact distribution of class pixels across the
training dataset is shown in Table 1.

To address this, I use weighted cross-entropy loss in the
baseline, where class weights are computed using median
frequency balancing:

wc =
median(f)

fc

where fc is the frequency of class c (excluding the ig-
nored class). The loss becomes:

LWCE = −
∑
i

wyi
log p(yi)

As an ablation factor, I explore using focal loss [4],
which modifies the standard cross-entropy loss to focus
learning on difficult or minority-class pixels. Focal loss is
expressed as:

LFocal = −
∑
i

wyi
(1− p(yi))

γ log p(yi)

where p(yi) is the model’s predicted probability for the
true class yi, wyi

is a class-specific weight, and γ = 2.0 is
a focusing parameter.

Focal loss works by reducing the relative loss contribu-
tion from well-classified (easy) examples, where p(yi) is
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high, and instead amplifies the gradient signal from misclas-
sified (hard) examples. This makes it particularly effective
for imbalanced datasets, where focal loss allows the model
to concentrate more on learning the minority classes that are
typically harder to classify correctly.

3.3. Data Augmentation: Class-Aware Oversam-
pling and Transformations

I also explore whether data augmentation can enhance
generalization and improve the model’s ability to segment
rare classes. While Shorten and Khoshgoftaar [15] sug-
gest oversampling rare classes until parity is achieved, a key
challenge in the context of land cover classification is that
one image usually contain multiple classes.

To address this, I built a custom dataset wrapper that
adaptively oversamples training images based on the pres-
ence of rare or very rare classes. For each training mask,
the dataset expansion logic is as follows:

• If the image contains any very rare class (defined as
Water), it is repeated up to 6 times.

• If it contains a rare class (defined as Rangeland or For-
est), it is repeated 3 times.

• If the image is dominated by Agricultural Land
(more than 70% of pixels) and does not contain a rare
class or very rare class, it is excluded with a skip prob-
ability of 0.7.

• Otherwise images with only Urban, Rangeland, Forest
land are repeated 2 times to maintain diversity.

For all repeated samples (except the first occurrence), I ap-
plied data augmentations to increase variability. These in-
clude horizontal and vertical flips, random rotations within
±30◦, and jitter. This targeted oversampling and augmen-
tation strategy aims to improve the model’s exposure to un-
derrepresented classes during training.

In practice, however, the class aware augmentation only
lead to a moderate improvement in representation of rare
classes, as can be seen in Table 1. A key challenge seems
to be that most images with rare classes also have a domi-
nant class present. As thus, future work could explore more
advanced rebalancing techniques. Nevertheless, since the
sampling strategy still increases the amount of training data
on the whole, it may still be insightful to see if even a mod-
erate rebalancing is sufficient to impact model training dy-
namics.

3.4. Transfer Learning: U-Net with ResNet-34 En-
coder

I evaluate the effect of transfer learning by replacing the
baseline U-Net encoder with a ResNet-34 [6] backbone pre-
trained on ImageNet. Due to the small size of the training

Class Name Original (%)Augmented%)
Urban land 11.04 10.53
Agriculture land 57.35 52.01
Rangeland 8.26 8.63
Forest land 11.54 10.67
Water 3.11 3.86
Barren land 8.64 9.21
Unknown 0.06 0.07

Table 1. Class-wise pixel percentage distribution in the training
dataset before and after augmentation.

dataset(only 643 images), this approach may improve seg-
mentation and accerlate training by leveraging pre-trained
visual features.

The decoder mirrors the U-Net structure and integrates
skip connections from each ResNet block. The architecture
outputs logits of shape RC×H×W , consistent with the base-
line for a fair comparison.

3.5. Software

All models were implemented using PyTorch [12] with
pretrained encoders from Torchvision. Data processing and
evaluation made use of NumPy [5], Matplotlib [7], and
Seaborn [16].

4. Dataset

The DeepGlobe Land Cover Classification dataset con-
sists of 1,146 high-resolution satellite images at a resolution
of 2448 × 2448 pixels [3]. Due to hardware and memory
constraints, all images were resized to 1024 × 1024 which
is sufficient to retain meaningful semantic detail. Of the
1,146 images provided by DeepGlobe, only the 803 train-
ing images include labeled RGB segmentation masks; the
validation and test labels are withheld for competition eval-
uation. Therefore, for this project, I used only the labeled
training set and manually split it into training, validation,
and test sets with an 80/10/10 ratio, resulting in 643 train-
ing images, 80 validation, and test 80 images.

During preprocessing, I normalized all images to [0,1].
I also converted the RGB mask values into integer class la-
bels (0 through 6), corresponding to the seven defined land
cover categories. Data augmentation, described in detail in
the Methods section, is included as an ablation factor to as-
sess its impact on generalization and rare class performance.

A representative example of the expected model input
and corresponding output is shown in Figure 1, where the
raw satellite imagery is paired with a ground truth segmen-
tation mask.

For a description of each class and its corresponding
color in the segmentation mask, refer to Table 2
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Figure 1. An example input-output pair from the dataset.

Class Name Color Description
Urban Land Gray Man-made, built-up areas.
Agricultural Land Yellow Farms, cropland, orchards,

vineyards, nurseries
Rangeland Light Green Non-forest, non-farm green

land covered with grass or
sparse vegetation.

Forest Land Dark green Land with a certain percentage
of tree density.

Water Blue Rivers, oceans, lakes, wetlands,
and ponds.

Barren Land Brow Areas with little to no vege-
tation, including mountains,
rocky terrain, deserts, and
beaches.

Unknown Black Areas obscured by clouds or
other phenomena making clas-
sification infeasible.

Table 2. Land cover class definitions with corresponding color la-
bels and descriptions.

5. Experiments, Results, and Discussion
5.1. Training Details

I trained all models using the Adam optimizer with a
learning rate of 1 × 10−4, a batch size of 2, and for 30
epochs. The batch size was limited to 2 due to GPU mem-
ory constraints. For the learning rate, I experimented with
both 1× 10−3 and 1× 10−4 on the baseline model; I found
that the higher rate led to unstable training and spiky vali-
dation loss, while 1 × 10−4 provided more stable and con-
sistent convergence. To determine the number of training
epochs, I experimented using 10, 20, and 30 epochs using
the baseline model and found that 30 was necessary to reach
convergence when using the lower learning rate.

I chose the Adam optimizer because it combines the ben-
efits of momentum and adaptive learning rates, making it
well-suited for training segmentation networks like U-Net
without extensive learning rate tuning. Its ability to handle
sparse gradients and noisy updates was beneficial given the
complexity and imbalance of the dataset.

The main evaluation metric is pixel-wise Intersection

over Union, where Intersection over Union for class j is
defined as:

IoUj =

∑n
i=1 TPij∑n

i=1 TPij +
∑n

i=1 FPij +
∑n

i=1 FNij
(1)

Where:

• n is the total number of images in the dataset.

• k is the total number of land cover classes.

• TPij is the number of pixels in image i that are cor-
rectly predicted as class j (true positives).

• FPij is the number of pixels in image i that are incor-
rectly predicted as class j (false positives).

• FNij is the number of pixels in image i that belong to
class j but are predicted as another class (false nega-
tives).

Mean IOU would be computed as such:

mIoU =
1

k

k∑
j=1

IoUj (2)

Table 3 summarizes the results of each model variant.
Additionally, I also report IoU per class in Table 4. In the
following subsections, I analyze the contribution of each
component in detail.

Model Variant mIoU
Baseline (U-Net) 0.27
+ Focal Loss 0.20
+ Data Augmentation 0.29
+ ResNet-34 Encoder 0.34

Table 3. Ablation study showing the effect of each individual mod-
ification on mean Intersection-over-Union (mIoU).

Class Baseline +Focal Loss +Augmented +ResNet-34
Urban 0.46 0.35 0.40 0.58
Agriculture 0.56 0.59 0.55 0.63
Rangeland 0.12 0.03 0.15 0.16
Forest 0.23 0.17 0.27 0.25
Water 0.27 0.16 0.30 0.34
Barren 0.10 0.07 0.15 0.18

Table 4. Ablation study showing the effect of each individual mod-
ification on classwise IoU.

5.2. Baseline Model

Overall, performance on baseline model was rather poor,
with 0.27 mIOU. Examining class wise IoU, shown in Fig-
ure 2 reveals that while the model is able to learn represen-
tations for the dominant class of Agriculture, it struggles
significantly with learning rare classes.

4324



Figure 2. Per-class IoU of validation set across training epochs
when using baseline model

Interestingly, although Urban Land makes up a relatively
small proportion of the training data, the model is still able
to learn representations for this class. This may be due to
the visual distinctiveness of urban areas compared to other
rare classes. In contrast, the model struggles to learn range-
land and Barren land which are more visually ambiguous
and may exhibit overlaps with Agriculture. Water also has
relatively poor performance. This may be due to its low
presence in the dataset and its relative ambiguity.While we
might expect Water to be highly distinctive, in practice, wa-
ter in satellite imagery often appears as a dark, flat region
that can resemble shadowed terrain or soil, rather than the
clear, reflective blue we conventionally associate with it.
This can be seen in the qualitative predictions shown in Fig-
ure 3.

Figure 3. Input image(right), Ground Truth Mask(middle), Pre-
dicted Mask(left) for Baseline

The baseline model demonstrates a strong ability to cap-
ture fine-grained spatial detail, but often at the expense
of semantic accuracy. As shown in Figure 3, the model
predicts small patches of Rangeland (light green) within
a larger Agriculture region, corresponding to minor vege-
tation patches visible in the input image. Impressively, it
even detects isolated trees, visible as small dark green dots
in the predicted mask, which align with tree locations in

the input image. However, the model fails to incorporate
broader contextual cues: these vegetation patches and trees
are part of a cultivated field and should therefore be clas-
sified as Agriculture. The model’s predictions often align
with fine structures and edges in the input image, but this
over-reliance on local texture and appearance leads to se-
mantically incorrect segmentation. This highlights a key
limitation of the baseline U-Net: its inability to integrate lo-
cal detail into a coherent global understanding of the scene.

Finally, while the presence of class imbalance might sug-
gest a tendency to overpredict the dominant class, our qual-
itative example reveals otherwise(Figure 3). We do not con-
sistently see Agriculture replacing other classes; instead,
Agricultural regions are frequently misclassified as other
land types. This is evident in the confusion matrix(Figure 4,
where false positives are disproportionately associated with
rare classes being predicted in place of Agriculture. One
possible explanation for this behavior lies in the high vari-
ability within the Agriculture class–driven by differences in
crop type, growth stage, and field structure–which makes it
difficult for the model to learn a consistent visual represen-
tation.

Figure 4. Confusion matrix for the baseline model. Most classes
are not overpredicted as Agriculture, except Rangeland and Bar-
ren Land (which are visually similar). Agricultural land is often
misclassified as rare classes, indicating a tendency toward false
positives of rare classes.

5.3. + Focal Loss

To assess whether focal loss could improve performance
on rare or underrepresented classes, I replaced the weighted
cross-entropy loss in the baseline model with focal loss.
This formulation was motivated by its success in object de-
tection settings with severe class imbalance [8]. However,
the model actually showed worsened performance on rare
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classes (Table 4), indicating that focal loss does not help–
and may even hinder–rare class learning in this context.

One possible explanation for this degradation is the rel-
atively small size of the training set: there may simply
not be enough high-quality, informative examples from rare
classes to guide learning effectively. Moreover, the model
was already prone to false positives for rare classes, as dis-
cussed earlier, with classes like Water and Rangeland fre-
quently predicted in place of Agriculture. Since focal loss
explicitly upweights hard-to-classify instances, it may have
inadvertently amplified this existing tendency, especially in
the presence of label noise or ambiguous pixels. For exam-
ple, if some agricultural regions contain dark or flat patches
resembling Water, and a few of these are mislabeled (or sim-
ply difficult), focal loss will push the model to fit these rare,
hard examples more aggressively—leading to overpredic-
tion of the rare class.

This hypothesis is supported by the confusion matrix in
Figure 5, which shows a substantial increase in Agricultural
land being incorrectly identified as Water.

Figure 5. Confusion Matrix at Test Time(Focal loss). Compared to
baseline, the amount of Agricultural land being incorrectly classi-
fied as Water increased.

These results suggest that while focal loss is theoretically
well-suited for addressing class imbalance, its effectiveness
may be limited in low-data regimes, particularly when vi-
sual ambiguity and noisy labels are already causing mis-
classifications in favor of rare classes.

5.4. + Data Augmentation

Data augmentation led to a slight overall improvement
in mIoU, with most gains observed in underrepresented
classes such as Forest, Water, and Barren Land (Table 4).
However, it also resulted in decreased mIoU for dominant
classes like Agriculture and Urban. This decline may pos-

sibly be attributed to the sampling strategy, which reduced
the proportional frequency of these classes during training.
Interestingly, despite undergoing a similar proportional re-
duction in training samples, Forest saw notable improve-
ments in mIoU. This suggests that it may have benefited
more from the diversity introduced through augmentation–
especially color jitter. Forested regions often exhibit a wide
range of natural color variation due to different tree types,
seasons, and canopy structures. As such, color jitter likely
enhanced the model’s ability to generalize across intra-class
diversity.

In contrast, classes like Agriculture and Rangeland were
more negatively affected. These two classes are not only
visually similar, but also both exhibit wide visual variations
that may overlap with one another. For example, some types
of rangeland may appear as neatly mowed grassland, while
certain agricultural fields-especially during early growth
stages-can resemble natural grasslands, making them dif-
ficult to distinguish. Applying color jitter in this case may
have increased visual overlap between them, making them
harder to distinguish. This is supported by the confusion
matrix (Figure 6), which shows increased misclassification
between Agriculture and Rangeland following augmenta-
tion. Additional qualitative examples of this confusion are
shown in Figure 7.

Figure 6. Confusion Matrix at Test Time(Augmentation). Agricul-
tural land is frequently confused for Rangeland.

Overall, while data augmentation improved generaliza-
tion and performance for several rare classes, it introduced
new trade-offs, particularly for visually similar categories.
Future work could explore more targeted augmentation
strategies that preserve key inter-class distinctions–such as
selectively applying jitter based on class characteristics–to
boost minority class performance without degrading accu-
racy on more abundant or visually ambiguous classes.
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Figure 7. Input image(right), Ground Truth Mask(middle), Pre-
dicted Mask(left) for Augmentation. Large patches of Agricultural
land got confused for Rangeland.

5.5. + ResNet-34 Encoder

Replacing the baseline U-Net encoder with a ResNet-34
backbone pretrained on ImageNet improved performance
across all classes, leading to an overall increase in mIoU
(Table 4 and Table3).

The model was able to learn representation for non-
dominant classes over training, with improvements in Wa-
ter, Barren land, and Urban land, as shown in Figure 8.

Figure 8. Per-class IoU of validation set across training epochs
when using ResNet encoder

This improvement may be attributed to transfer learn-
ing: the pretrained encoder provides a stronger feature rep-
resentation, especially in early layers,enabling the network
to extract more meaningful semantic features from limited
training data, leading to faster convergence (Figure 9).

Qualitative results also reflect the improvement in pre-
diction quality. As shown in Figure 10, the ResNet-
augmented model produces masks with fewer spurious pre-
dictions and more coherent predictions compared to the
baseline. This suggests that the pretrained encoder helps
the model better understand spatial context and reduce the
noisy, fragmented patches seen in the base U-Net output.

Despite the overall improvement in segmentation qual-
ity, the model still struggles with mid-level semantic deci-
sions, particularly in visually ambiguous regions. As illus-
trated in Figure 10, large portions of the agricultural field of

Figure 9. Training and Validation Loss using ResNet Encoder,
demonstrates convergence roughly around the 15th epoch

Figure 10. Input image(right), Ground Truth Mask(middle), Pre-
dicted Mask(left) for + ResNet-34.

the input image are misclassified as Rangeland(two visually
similar classes) in the predicted mask. These errors suggest
that, despite improvements from the ResNet encoder, the
model still lacks sufficient global semantic reasoning to rec-
ognize large, coherent land cover structures. It struggles to
consistently identify entire regions of Agriculture or Forest,
instead segmenting them into smaller, disjointed parts. Ad-
dressing this may require architectural changes that support
scene-level understanding, such as attention mechanisms or
hierarchical context modeling.

6. Conclusions
This project explored the challenges of semantic seg-

mentation in high-resolution satellite imagery for land cover
classification. Overall, the task was difficult, with all U-Net
model variants achieving relatively low performance, with
mIoU scores ranging from 0.20 to 0.34. While class im-
balance is often cited as a key limitation in such tasks, the
results here suggest it is not the primary bottleneck. Across
the confusion matrices for all model variants, there is lit-
tle evidence that rare classes are being misclassified as the
dominant class, Agriculture. On the contrary, we observe
the opposite pattern–particularly pronounced in models
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trained with Focal Loss and data augmentation–where Agri-
culture is frequently misclassified as rare classes. There-
fore, the low mIoU appears to result not from an inability to
detect rare classes, but from a tendency to incorrectly assign
rare class labels, leading to a high number of false positives
of rare classes.

My hypothesis is that three factors collectively con-
tribute to this behavior:

• Low-Data Regime: Limited training examples hinder
the model’s ability to learn the spatial extent and con-
textual cues associated with each class. As a result, the
model tends to overgeneralize from sparse features, ap-
plying class labels too broadly across the image. This
is particularly problematic in satellite imagery, where
local features (e.g., patches of green) are shared by
multiple classes and insufficient data makes it difficult
to learn precise distinctions.

• Inter-Class Similarity: Classes such as Agriculture,
Rangeland, and Barren Land often share similar color
and texture profiles, especially after augmentations
like color jitter. Their visual similarity makes it hard
to learn distinct boundaries between classes, resulting
in misplaced predictions.

• Intra-Class Variation: Classes exhibit wide internal di-
versity (e.g., different color and textures of vegetation),
requiring the model to learn broad, abstract represen-
tations. Without strong semantic guidance, the model
tends overgeneralize, labeling any region with match-
ing low-level features, contributing further to false
positives.

Another challenge stems from the spatial scale of satel-
lite imagery. Each image spans approximately 1.5km2[3],
encompassing numerous fine-grained visual patterns. The
task is not just to recognize texture but to interpret small-
scale visual cues within a larger semantic context. For in-
stance, a small grassy patch within a farm should still be
classified as Agriculture, not Rangeland. U-Net is highly
capable of capturing fine details, but struggles to integrate
them into broader structural understanding.

Among the techniques tested, transfer learning with a
ResNet-34 encoder pretrained on ImageNet yielded the
most substantial improvement. The pretrained model pro-
duced more spatially coherent predictions and demonstrated
better local context aggregation, correctly associating visu-
ally ambiguous patches with their broader land use cate-
gory. For example, it was more likely to correctly classify
isolated grassy areas within a field as part of Agriculture,
rather than as Rangeland. This suggests that mid-level fea-
tures and boundary cues learned from natural images help
the model interpret ambiguous satellite textures more effec-
tively.

However, these improvements were localized rather than
holistic. While the pretrained encoder helped resolve
small-scale ambiguities, the model continued to struggle
with large-scale decisions–sometimes misclassifying parts
of agricultural fields as Rangeland. This indicates that the
model still struggles to understand the larger global seman-
tic structure, especially in the context of visually ambiguous
classes.

Data augmentation also showed mixed results. The
class-aware oversampling strategy improved performance
for rare classes such as Forest, Water, and Barren Land,
which benefited from increased diversity. However, it si-
multaneously introduced more confusion between Agricul-
ture and Rangeland, reinforcing the idea that augmentation
alone is not enough when classes are visually similar. With-
out explicit structural or contextual cues, augmentation may
even amplify class overlap.

Focal loss, although intended to address class imbalance,
actually worsened performance–highlighting that the core
issue lies not in an imbalanced dataset, but in the ambiguity
of class boundaries. In a setting where many hard examples
are ambiguous rather than informative, placing extra em-
phasis on them may increase noise sensitivity. When class
boundaries are subtle or poorly defined, penalizing low-
confidence predictions can push the model to make over-
confident, incorrect decisions, increasing false positives.

Taken together, these results support the conclusion that
inter-class similarity and intra-class variation—amplified
by limited data and lack of global context—are the primary
barriers to effective land cover segmentation, not class im-
balance alone. This highlights the need for models that can
capture broader scene-level context to make more semanti-
cally informed predictions. At the local level, land cover
classes often exhibit overlapping visual features, making
isolated patches difficult to interpret reliably. Global con-
text provides the surrounding semantic and spatial informa-
tion needed to disambiguate such cases. For instance, rec-
ognizing that a patch of vegetation lies within the bound-
aries of a regular, rectangular field—surrounded by other
cultivated areas—strongly suggests that it is part of Agricul-
ture, even if its local texture varies. Similarly, identifying a
water region as a coherent body (e.g., a river or lake) based
on its shape, continuity, and relation to adjacent landforms
can help confirm its class, even if the local appearance is
dark or noisy. By reasoning over the structure and relation-
ships of larger regions, models with access to global con-
text may be able to make more semantically accurate pre-
dictions.While ResNet-based transfer learning helps miti-
gate these issues to some extent, further improvement will
likely come from models capable of capturing long-range
spatial dependencies and reasoning over the global structure
of a scene. Potential future directions include transformer-
based architectures, self-supervised pretraining on satellite-
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specific data, and hierarchical models that integrate local
detail with broader scene understanding.
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